Nos tutelles

CNRS

Rechercher





Accueil > Les équipes > Chimie Structurale Organique et Biologique (CSOB) > Publications

Publications

publié le , mis à jour le

2022



  • F. Zhao, M. Abdellaoui, W. Hagui, M. Ballarin-Marion, J. Berthet, V. Corcé, S. Delbaere, H. Dossmann, A. Espagne, J. Forté, L. Jullien, T. Le Saux, V. Mouriès-Mansuy, C. Ollivier, et L. Fensterbank, « Reactant-induced photoactivation of in situ generated organogold intermediates leading to alkynylated indoles via Csp2-Csp cross-coupling », Nature Communications, vol. 13, nᵒ 1, p. 2295, avr. 2022.
    Résumé : Photosensitization of organogold intermediates is an emerging field in catalysis. In this context, an access to 2,3-disubstituted indoles from o-alkynyl aniline and iodoalkyne derivatives via a gold-catalyzed sequence under visible-light irradiation and in the absence of an exogenous photocatalyst was uncovered. A wide scope of the process is observed. Of note, 2-iodo-ynamides can be used as electrophiles in this cross-coupling reaction. The resulting N-alkynyl indoles lend themselves to post-functionalization affording valuable scaffolds, notably benzo[a]carbazoles. Mechanistic studies converge on the fact that a potassium sulfonyl amide generates emissive aggregates in the reaction medium. Static quenching of these aggregates by a vinylgold(I) intermediate yields to an excited state of the latter, which can react with an electrophile via oxidative addition and reductive elimination to forge the key C-C bond. This reactant-induced photoactivation of an organogold intermediate opens rich perspectives in the field of cross-coupling reactions.
    Mots-clés : CHEMBIO, CSOB, Photocatalysis, POLE 1, POLE 3, Reaction mechanisms.

2021



  • S. Khodjoyan, E. Remadna, H. Dossmann, D. Lesage, G. Gontard, J. Forté, H. Hoffmeister, U. Basu, I. Ott, P. Spence, Z. Waller, M. Salmain, et B. Bertrand, « [(C^C)Au(N^N)]+ complexes as a new family of anticancer candidates: synthesis, characterization and exploration of the antiproliferative properties », Chemistry – A European Journal, vol. 27, nᵒ 63, p. 15773-15785, 2021.
    Résumé : A library of eleven cationic gold(III) complexes of the general formula [(C^C)Au(N^N)] + when C^C is either biphenyl or 4,4’-ditertbutyldiphenyl and N^N is a bipyridine, phenanthroline or dipyridylamine derivative have been synthesized and characterized. Contrasting effects on the viability of the triple negative breast cancer cells MDA-MB-231 was observed from a preliminary screening. The antiproliferative activity of the seven most active complexes were further assayed on a larger panel of human cancer cells as well as on non-cancerous cells for comparison. Two complexes stood out for being either highly active or highly selective. Eventually, reactivity studies with biologically meaningful amino acids, glutathione, higher order DNA structures and thioredoxin reductase (TrxR) revealed a markedly different behavior from that of the well-known coordinatively isomeric [(C^N^C)Au(NHC)] + structure. This makes the [(C^C)Au(N^N)] + complexes a new class of organogold compounds with an original mode of action.
    Mots-clés : Bioorganometallics, Biphenyl, Cancer, Chelate, CHEMBIO, CSOB, Gold, POLE 3.

2020

2018

--- Exporter la sélection au format