Isolation and Structural Characterization of Eightfold Protonated Octacyanometalates \([\text{M(CNH)}_8]^4\) (M = MoIV, WIV) from Superacids
Malte Sellin, Valérie Marvaud, and Moritz Malischewski*

Dedicated to Professor Konrad Seppelt on the occasion of his 75th birthday

Abstract: Octacyanometalates \(K_4[\text{Mo(CN)}_8]\) and \(K_4[\text{W(CN)}_8]\) are completely protonated in superacidic mixtures of anhydrous hydrogen fluoride and antimony pentfluoride. The resulting hydrogen isocyanide complexes \([\text{Mo(CNH)}_8]^4\) \([\text{ShF}_6]^–\) and \([\text{W(CNH)}_8]^4\) \([\text{ShF}_6]^–\) are the first examples of eight-coordinate homoleptic metal complexes containing hydrogen isocyanide (CNH) ligands. The complexes were crystallographically characterized, revealing hydrogen-bonded networks with short N···H···F contacts. Low-temperature NMR measurements in HF confirmed rapid proton exchange even at \(-40^\circ\text{C}\). Upon protonation, \(v(\text{C}=\text{N})\) increases of about 50 cm\(^{-1}\) which is in agreement with DFT calculations.

The lability of metal cyanides towards acids is well known and often a subject of safety warnings since highly toxic hydrogen cyanide might be released. In general, protonation of metal-bound cyano ligands (M) may be accompanied by the formation of hydrogen isocyanide (CNH) ligands. The complexes were characterized crystallographically, revealing hydrogen-bonded networks with short N···H···F contacts. Low-temperature NMR measurements in HF confirmed rapid proton exchange even at \(-40^\circ\text{C}\). Upon protonation, \(v(\text{C}=\text{N})\) increases of about 50 cm\(^{-1}\) which is in agreement with DFT calculations.

The superacidic mixtures HF/AsF\(_5\) or HF/ShF\(_6\) have recently been used for the protonation of organic nitriles\([11,12]\) and even HCN\([13]\) as well as for the preparation of highly electrophilic organic cations\([14,15]\). Even though one could expect that the use of superacids should immediately lead to the destruction of polycyanometalates, these systems have the advantage that even the formed AsF\(_6^–\) or ShF\(_6^–\) anions are very weak nucleophiles and therefore much weaker ligands than the CNH ligands that are formed upon protonation.

Although the first reports on octacyanometalates \([\text{M(CN)}_8]^4\) (M = MoIV, WIV) date to the beginning of the 20th century\([16–19]\) they got a lot of attention from coordination and magnetoc hemists in the past decades. Since the early 2000s, a plethora of octacyanometalate-based supramolecular coordination networks as well as polynuclear complexes and cluster compounds\([20–24]\) have been reported. The ease of oxidation of \([\text{M(CN)}_8]^4\) (M = Mo, W) to \([\text{M(CN)}_8]^3\) and the accessibility of an excited triplet state for \([\text{M(CN)}_8]^3\) (M = Mo, W) by light irradiation make octacyanometalates suitable building blocks for photomagnetic materials\([25–28]\) while paramagnetic \([\text{M(CN)}_8]^3\) (M = Mo, W) are promising building blocks for single-molecule magnets\([29]\).

While treatment of octacyanometalates with hydrogen chloride gives adducts of the neutral acids \(\text{H}_4[\text{M(CN)}_8]\cdot6\text{H}_2\text{O}\) (M = Mo, W)\([30]\), \(\text{H}_4[\text{W(CN)}_8]\cdot4\text{HCl}\cdot12\text{H}_2\text{O}\)\([31]\), and \(\text{H}_4[\text{Mo(CN)}_8]\cdot2\text{O(C}_2\text{H}_5)\cdot\text{CH}_3\text{OH}\cdot2\text{H}_2\text{O}\)\([32]\) complete (octa-) protonation is achieved by reacting \(K_4[\text{M(CN)}_8]\cdot2\text{H}_2\text{O}\) (M = Mo, W) with anhydrous hydrogen fluoride and a large excess of antimony pentafluoride ShF\(_6\) (Scheme 1). Although the fully protonated species \([\text{M(CNH)}_8]\) \([\text{ShF}_6]\), (M = Mo, W) are only slightly soluble in anhydrous hydrogen fluoride at room temperature, their solubility can be slightly increased by adding small amounts of sulfur dioxide SO\(_2\) as cosolvent. Highly moisture-sensitive yellow crystals form upon slow cooling to \(-75^\circ\text{C}\) besides colorless crystals of KShF\(_6\).

\[
\text{K}_4[\text{M(CN)}_8] \overset{\text{HF/ShF}_6}{\rightleftharpoons} \text{[M(CNH)}_8\text{][ShF}_6]\text{4} (\text{M = Mo, W})
\]

Supporting Information and the ORCID identification number(s) for the author(s) of this article can be found under:
https://doi.org/10.1002/anie.202002366.

© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

How to cite: Angew. Chem. Int. Ed. 2020, 59, 10519–10522
International Edition: doi.org/10.1002/anie.202002366
German Edition: doi.org/10.1002/ange.202002366
positions of all hydrogen atoms could be located via difference electron density map.

The M–C–N–H bonds are close to linear (varying from 172–179°; Figure 1), while all terminal hydrogen atoms of the hydrogen isocyanide ligands form strong hydrogen bonds to the fluorine atoms of the SbF$_6^-$ ions and cocrystallized HF molecules. In the molybdenum compound the MCNH–F distances are in the range of 1.718(3)–1.994(4) Å. Thus, the N–(H)–F distances are relatively short (2.584(2)–2.709(2) Å) and in a similar range to those in protonated nitriles with hexafluorometalate counteranions (2.5–2.8 Å).

Bond lengths in [Mo(CNH)$_8$]$_4^{4+}$ [SbF$_6$]$^-·2$HF. Ellipsoids shown at 50% probability; C gray, N blue, H white, Mo turquoise, F green, Sb lavender.

The Mo–C bond lengths in [Mo(CNH)$_8$]$_4^{4+}$ [SbF$_6$]$^-·2$HF (2.140(2)–2.168(2) Å) are very similar to the Mo–C bond lengths in K$_4$[Mo(CN)$_8$]$·2$H$_2$O (Mo–C 2.163(5) Å). However, changes in C–N bond lengths are more significant. In the fully protonated species, the C–N bond lengths are in the range of 1.128(3)–1.136(3) Å and therefore shorter than in the potassium salt (1.152(6) Å). While the former value resembles more the C–N bond length in protonated nitriles, the latter is more similar to free HCN (1.157(1) Å). Bond lengths in [W(CNH)$_8$]$_4^{4+}$ [SbF$_6$]$^-·2$HF are very similar to the analogous Mo compound (see Table 1). This finding is also supported by DFT calculations (M06L/Def2TZVP) on both [M(CNH)$_8$]$_4^{4+}$ and [M(CNH)$_8$]$^{4+}·8$HF (M = Mo, W). The latter was chosen as a model to simulate the influence of hydrogen bonding in the crystal. Interestingly, the comparison revealed that C–N bond lengths were totally unaffected, while M–C bond lengths decreased slightly in the calculated HF solvates. However, it has to be stated that the calculated M–C bond lengths were significantly longer than the experimentally found values.

Additionally, frequency calculations turned out to be even more problematic. The comparison between the calculations for [M(CNH)$_8$]$^{4+}$, [M(CN)$_8$]$^{4+}$, [M(CNH)$_8$]$^{4+}·8$HF, and [M-(NCH)$_8$]$^{4+}·8$HF (M = Mo, W) with the reaction products was inconclusive. Probably this is caused by the high ionic charges and strong hydrogen bonding which are insufficiently modelled in the calculations.

The IR spectra of [M(CNH)$_8$]$^{4+}$ [SbF$_6$]$^-·2$HF (M = Mo, W; Figure 2) both display a very broad band above 3000 cm$^{-1}$ which can be attributed to N–H stretching. Additionally, a weak band at 1615 cm$^{-1}$ can be assigned to N–H bending, since both bands were shifted during deuteration experiments with DF/SbF$_6$. While an isotopic ratio of 1.37 is observed for the δ(NH)/δ(ND) deformation vibrations (close to the theoretical value of 1.41) the corresponding value for the ν(NH)/ν(ND) stretching vibrations is only 1.2 (Table 2). Similar effects have been observed before and are caused by strong hydrogen bonding, which has a greater influence on stretching vibrations than on deformation vibrations.

IR and Raman spectra of [M(CNH)$_8$]$^{4+}$ [SbF$_6$]$^-·2$HF (M = Mo, W) both display an increase of the CN stretching vibration by about 50 cm$^{-1}$ compared to K$_4$[M(CN)$_8$]$·2$H$_2$O. A similar blueshift has already been observed in IR spectra of neutral polycyanometalates.[36–40] This bond-strengthening effect upon protonation is caused by the increased polarization of the carbon–nitrogen bond. This observation

| Table 1: Experimental and calculated bond lengths in Å. |
|---|---|---|---|
| Compound | M–C (exp.) | C–N (exp.) | C–N (calc.) |
| [Mo(CNH)$_8$]$^{4+}$ | 2.140(2)–2.168(2) | 1.128(3)–1.136(3) | 2.203 | 1.146 |
| [W(CNH)$_8$]$^{4+}$ | 2.142(2)–2.169(2) | 1.127(3)–1.137(3) | 2.211 | 1.147 |

| Table 2: Experimental IR data in cm$^{-1}$. |
|---|---|---|---|---|
| ν(NH)/ν(ND) | 3082 (b) | 2529 (b) | 3030 (b) | 2525 (b) |
| δ(NH)/δ(ND) | 2166 (m) | 1960 (b) | 2145 (m) | 1970 (b) |
| 1615 (m) | 1182 (m) | 1182 (m) | 1180 (m) |

Figure 1. Selected short H–F contacts < 2 Å (in orange) in the crystal structure of [Mo(CNH)$_8$]$^{4+}$ [SbF$_6$]$^-·2$HF. Ellipsoids shown at 50% probability; C gray, N blue, H white, Mo turquoise, F green, Sb lavender.
is in line with the shortening of the carbon–nitrogen distance in the solid state structure.

Despite the relatively low solubility of [M(CNH)₈]⁴⁺ [SbF₆]⁻ (M = Mo, W) in pure anhydrous HF even at room temperature, it was possible to record NMR spectra of the products by using a solvent mixture of HF and SO₂ at −40°C (Table 3). The ¹⁴N NMR spectrum of a solution of [Mo(CNH)₈]⁴⁺ [SbF₆]⁻ shows a broad, unresolved peak at (δ = −182 ppm) which is significantly shifted compared to K₄Mo(CN)₈ in water (δ = −95 ppm). A similar shift was observed for the protonation of acetonitrile (δ(CH₃CNH⁻CN = −134 ppm; δ(CH₂CNH⁻CN) = −241 ppm).[11] Only one signal at δ = 121 ppm is displayed in the ¹³C NMR spectrum, which indicates an upfield shift upon protonation compared to aqueous K₄(Mo(CN)₈ (δ = 149 ppm).

Table 3: NMR data, recorded in a mixture of HF and SO₂ at −40°C; chemical shifts δ in ppm.

<table>
<thead>
<tr>
<th>Compound</th>
<th>¹³C δ (ppm)</th>
<th>¹⁴N δ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K₄Mo(CN)₈ in D₂O</td>
<td>+149</td>
<td>−95</td>
</tr>
<tr>
<td>K₄W(CN)₈ in D₂O</td>
<td>+143</td>
<td>−98</td>
</tr>
<tr>
<td>[Mo(CNH)₈]⁴⁺ [SbF₆]⁻ in HF</td>
<td>+121</td>
<td>−182</td>
</tr>
<tr>
<td>[W(CNH)₈]⁴⁺ [SbF₆]⁻ in HF</td>
<td>+115</td>
<td>−179</td>
</tr>
</tbody>
</table>

It was not possible to detect a peak for the CNH ligand in the ¹H NMR spectrum, since rapid exchange between the CNH group and the highly acidic solvent mixture is expected. A similar problem was reported for the protonation of H₃Fe(CN)₆ by HF/BF₃ where it was not possible to freeze-out proton exchange even at the melting point of the solvent (−84°C).[21] Although the product [Fe(CNH)₆][BF₄] was reported to be stable for months in anhydrous HF, it decomposed in vacuum by losing HF and BF₃ to give H₂Fe(CN)₆. However, it has to be stated that under much more basic conditions, a so-called supramolecular complex with the formula [Fe(CNH–O(H)Et)₆]Cl₂ was crystallographically characterized.[22]

In summary, we report the first successful isolation of homoleptic metal complexes with eight hydrogen isocyanide ligands by exhaustive protonation of K₄M(CN)₈ by the superacid HF/SbF₆. Since isocyanides CN⁻ are good Ï–donor but weak Ï–acceptor ligands,[23] they provide an effective stabilization of the Mo IV and W IV ions. The resulting square-antiprismatic complexes [M(CNH)₈]⁴⁺ (M = MoIV, WIV) are dianionic and fulfill the 18-electron rule. While M–C bond lengths remain almost unchanged, protonation slightly shortens the C≡N bond, which is supported by an increase of v(CN) by 50 cm⁻¹. Additionally, the crystal structures display networks of strong H···F hydrogen bonds. These results suggest that polycyanometalates are much more stable against protolysis than generally thought (at least in the absence of potent nucleophiles) which opens up new pathways to hydrogen-bonded networks for various applications.[24]

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) – Projektnummer 387824871 – SFB 1349. Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) – Projektnummer 387824871 – SFB 1349. Computing time was made available by HPC Service of ZEDAT, FU Berlin.

Conflict of interest

The authors declare no conflict of interest.

Keywords: cyanides · hydrogen bonds · isocyanide ligands · protonation · superacidic systems

References

[45] CCDC 1983867 and 1983868 ([C_8H_10F_26MoN_8Sb_4] and [C_8H_10F_26N_8Sb_4W]), contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.