Direct Observation of Charge Transfer and Magnetism in Fe₄Co₄ Cyanide-Bridged Molecular Cubes

Niéli Daffe,*,† Juan-Ramón Jiménez,‡ Michal Studniarek,‡ Amina Benchohra,‡ Marie-Anne Arrie,§ Rodrigo Lescouézéc,† and Jan Dreiser*†

†Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
‡Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, F-75252 Paris, France
§Sorbonne Université/IRD/MNHN, UMR 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75252 Paris, France

Supporting Information

ABSTRACT: We have studied the zero-dimensional cubane molecular correspondent of a Prussian blue analogue Cs–Fe₄Co₄ at low temperature and high magnetic field by means of L-edge X-ray absorption spectroscopy and X-ray magnetic circular dichroism. We probe the magnetic and electronic structures of Fe and Co separately upon light irradiation, which allows us to observe directly the electron transfer coupled to a spin transition phenomenon within the molecular cubes and to investigate the nature of the metastable photoexcited state. The magnetic moments in the photoexcited state are found to be \(M = 1.3 \mu_B \) (\(M_{\text{dia}} = 0.59 \mu_B \) with large orbital moment, \(M_{\text{lso}} = 0.74 \mu_B \)) for low-spin Fe\(^{III} \) and \(M = 1.5 \mu_B \) (\(M_{\text{dia}} = 1.08 \mu_B \) with orbital moment, \(M_{\text{lso}} = 0.41 \mu_B \)) for high-spin Co\(^{III} \) at 2 K and 6.8 T. From our results, we evidence that a strong antiferromagnetic coupling between the metal ions can be ruled out.

The photocoupling of the magnetic and optical properties of switchable compounds is of great interest in view of possible implementations as sensors, optical switches, or memories in organic electronics devices.1–7 FeCo Prussian blue analogues (PBAs) are excellent candidate materials exhibiting a photoinduced metastable state as reported for the first time in the inorganic PBA polymer \(\text{K}_2\text{Co}_{1.4}\text{[Fe(CN)}_6\text{]} \cdot 6.9\text{H}_2\text{O} \).9 At the origin of the substantial changes of the magnetic properties in these 3D networks of metallic ions connected by cyanide ligands, there is a metal-to-metal electron transfer within the Fe–CN–Co pairs associated with a spin transition of the Co ions, known as the electron transfer coupled to spin transition (ETCST) phenomenon.10,11 The ground state is formed from pairs of Co and Fe ions both in the \(t^6_\mathbf{g} \) configuration. After the ETCST, in the excited state the former diamagnetic (Co\(^{II} \), \(t^6_\mathbf{g} \) \(S = 0 \) = (Fe\(^{II} \), \(t^6_\mathbf{g} \) \(S = 0 \)) pairs are converted to the paramagnetic (Co\(^{III} \), \(t^6_\mathbf{g} \) \(S = 3/2 \)) = (Fe\(^{III} \), \(t^6_\mathbf{g} \) \(S = 1/2 \)) ones. A schematic representation of the ETCST process in FeCo 3D-PBA is depicted Figure 1a.

Recently, cyanide-bridged FeCo systems attracted a renewed attention when the light-induced magnetic properties of PBAs were successfully transferred to discrete molecular FeCo models. First demonstrations include the report of thermally induced ETCST in a Fe₄Co₄ pentanuclear complex,12 and the photomagnetic effect in a 0D molecular cube of Fe₄Co₄ was reported for the first time a decade ago.13 Since then, the many advantages of transferring the photomagnetic properties to 0D molecular systems have been corroborated.14–20 These include less structural complexity than 3D-PBAs, facilitating rationalization and optimization of their magnetic properties, the availability of single crystals, and good solubility. Similar to 3D-PBA, the light-induced properties of the molecular systems are also attributed to the mechanism of ETCST.

The characterizations of the metal-to-metal electron-transfer processes are typically performed indirectly using magnetometry or X-ray structural analysis. In this respect, X-ray absorption spectroscopy (XAS) is a very powerful technique able to clarify the electronic structure of transition metals, including valence and spin states and crystal-field splitting by a direct observation of the 2p → 3d dipole allowed transitions at the L₂,₃ edges. The technique has been indeed successfully applied to examine the light-induced excited spin-state trapping (LIESST) in spin-crossover complexes and PBA.21–24 The direct observation of ETCST in photomagnetic molecular complexes was reported by Sekine et al., who have investigated the thermal and X-ray induced conversion in Fe₄Co₄ cyanide-bridge molecular squares using K-edge XAS.25 Very recently, Jafri et al. have evidenced the occurrence of the thermal and light-induced electron transfer in a FeCo dinuclear complex using L-edge XAS and X-ray magnetic circular dichroism (XMCDD).26 Another important unknown is the nature of the Fe–Co magnetic coupling in the photoinduced paramagnetic state of the molecular systems. Whereas in 3D-PBAs, the light-induced properties of the molecular systems are also attributed to the mechanism of ETCST.
PBA, an antiferromagnetic coupling between the CoHII and the FeLSIII was reported, calculations on paramagnetic 1D FeCo chains and on 0D FeCo square complexes have demonstrated that intramolecular ferromagnetic exchange pathways may dominate in the lower dimensional systems. In this study, we employ L-edge XAS and XMCD to examine the photomagnetic process in the discrete molecular heterocubane Cs⊂{[FeII(Tp)(CN)3]4[CoIII(pzTp)]3[CoII-(pzTp)]}·12CH3CN cluster (Tp = hydrotris(pyrazol-1-yl)borate; pzTp = tetra(pyrazol-1-yl)borate), from here on referred to as Cs−Fe4Co4. This complex encapsulating an inserted alkali ion is the true representation of the elementary unit of the cubic Cs−FeCo 3D-PBA. Besides, the remarkable stability of these cubic molecules in solution allows us to envision different solution processes for the surface deposition of these materials, which is of extreme importance for applications in molecular electronics or spintronics devices. Taking advantage of the elemental selectivity of XAS, we follow the changes of the electronic structures of Fe and Co upon photoexcitation, proving the concurrent electron transfer between these ions as well as the Co spin-state change. Furthermore, we resolve the exact compositions of the ground state and of the metastable excited state with the support of ligand-field multiplet (LFM) calculations. To the best of our knowledge, we report for the first time an XAS and XMCD study of the photoinduced excited state in a Fe4Co4 cubane system. We exploit the magnetic sensitivity of XMCD as a local probe of the magnetic moments of the Fe and Co ions and obtain insight into the possible magnetic coupling between the metallic centers in Cs−Fe3Co.

The neutral cyanide-bridged Fe4Co4 cage encapsulating a Cs+ ion is depicted in Figure 1b. Details of the synthesis and magnetic and structural characterization of Cs−Fe4Co4 can be found in ref 30. A solution of Cs−Fe4Co4 in dichloromethane (c ≈ 1 mM) was sprayed onto a gold-coated silicon substrate to obtain a homogeneous and clearly visible film of molecular deposit after the evaporation of the solvent, indicating a film thickness much larger than the probing depth of the total electron yield (TEY) detection of a few nanometers. No additional capping was used, and a comparison of the XAS recorded on a polycrystalline sample revealed that the molecules are fully intact in the film (Supporting Information (SI), Figure S1). This finding is consistent with the stability of the molecules in solution, as demonstrated in ref 30. XAS and XMCD spectra were recorded at the X-Treme beamline of the Swiss Light Source.31 The sample was positioned so that the X-ray beam was incident at an angle of 30° from the sample surface, as depicted in Figure 1c. XAS measurements were performed in TEY mode with the magnetic field applied parallel to the beam propagation direction. A large spot size (0.5 × 2.5 mm2) and a low photon flux were chosen to avoid radiation damage. The spectra were normalized to the maxima of the Fe or Co L3 edges after subtraction of the background using a step function to allow a direct comparison with the simulations. A laser (λ = 650 nm) with moderate intensity of ∼1 mW/mm2 was used to photoexcite the molecules for a total of 3 h. The sample was not exposed to X-rays before the laser

![Figure 1](image1.png)

Figure 1. (a) Schematic representation of the ETCST process in FeCo 3D-PBA. (b) Ball-and-stick representation of Cs−Fe4Co4. Hydrogen atoms, solvent molecules, and Cs bonds are omitted for clarity. Color code: iron, orange; cobalt, blue; cesium, purple; nitrogen, light blue; carbon, gray; boron, pink. The scale bar has a length of 1 nm. (c) Scheme of the XAS and XMCD experimental geometry.

![Figure 2](image2.png)

Figure 2. Experimental XAS of the ground and excited states measured at the Fe L2,3 edges (700−740 eV) and Co L2,3 edges (770−805 eV) of Cs−Fe4Co4 and calculated best-fit curves. All fits exhibit a high coefficient of determination 0.86 ≤ R² ≤ 0.98.
irradiation at low temperature to minimize the X-ray-induced conversion.25

Fe and Co XAS recorded at 300 K before the irradiation and at 2 K after the laser irradiation are shown in Figure 2. Initially, the Fe L_{3} edge exhibits a double-peak shape. After laser irradiation at 2 K, additional features appear, including a broad shoulder at ~710.9 eV and a sharp peak at the lower energy of 705.8 eV. The Co L_{3} edge displays one main peak at 779.7 eV and smaller contributions at 775.5, 776.9, and 778.3 eV before laser irradiation. In contrast, after irradiation, the contributions of features at lower energies prevail, whereas the peak at 779.7 eV is significantly reduced. Upon heating the sample to 300 K after the laser irradiation at low temperature, the system relaxes to the ground state because the molecules are trapped in the photoexcited state only up to a few tens of degrees Kelvin. The ground state of Cs–Fe₂Co₄ is fully recovered, as shown by the overlap of the spectra acquired after warming up the sample and the ones recorded before irradiation at room temperature in Figure 2. The thermal reversibility, which we evidenced by XAS, is in good agreement with previous SQUID measurements described in ref 30. Furthermore, it testifies to the absence of damage of the sample by the laser and X-ray irradiation. To deliberately check for the X-ray-induced conversion, we have measured in another experiment the X-ray spectra before laser irradiation at 2 K. This revealed the same spectral modifications due to photoexcitation by the laser but indicates a much slower conversion induced by the X-ray -induced conversion rate (cf. Figure S2).

A more precise analysis and understanding of the X-ray spectra of the ground and excited states is obtained by comparison with theoretical spectra of multiplet features of Fe^{II}, Fe^{III}, Co^{II}, and Co^{III} (LS: low spin and HS: high spin). Spectra were calculated using LFM theory, as implemented in the QUANTY/CRISPY software package.32,33 In the molecular Cs–Fe₂Co₄ cubes, all metal ions experience a slightly distorted octahedral coordination sphere with a pseudo-C₃ axis along the boron–metal direction. To approximate this distorted octahedral (O₆) environment, the calculations are performed using a C₃v point symmetry, and the strength of the crystal-field potential is therefore defined using three independent parameters D_q, D_σ, and D_r. Details of the parameters used are given in the SI. The simulations of the Fe L-edge spectra were performed to match the ones of the mononuclear reference compounds for Fe and Co ions. The Fe L-edge spectrum measured on Cs–Fe₂Co₄ at 300 K before photoexcitation plotted in Figure 2 is similar to the simulations obtained for Fe^{II}. The Fe L-edge spectrum on Cs–Fe₂Co₄ at 300 K before photoexcitation plotted in Figure 2 is similar to the simulations obtained for Fe^{III}. In contrast, the peak at 705.2 eV is the signature of Fe^{II}, which is observed in the excited state of Cs–Fe₂Co₄. This peak is known to originate from the 2p^{6}t_{2g} → 2p^{6}t_{2g} transitions that are absent in the Fe^{II} configuration.31,34

Concerning the Co spectra, the peaks centered at 775.8, 776.8, and 778.2 eV are fingerprints of Co^{II} in a six-fold coordination environment, whereas the signature of Co^{III} is characterized by peaks at 779.7 and 783.1 eV. The features corresponding to Co^{II} are shifted toward higher energies due to the shortening of the Co–ligand bonds as compared with Co^{III}. This well-defined separation in energy allows the comparison of the respective spectral features. The results obtained on the mononuclear reference compounds for Co^{II} and Co^{III} are presented and discussed in Figure S4. The contributions of the Co^{II} ions are well modeled using the C₃v symmetry, which takes into account the deviation from the octahedral (O₆) symmetry in the Cs–Fe₂Co₄ cubes. The 10Dq, Dσ, and Dr crystal-field parameters were chosen according to the previous distortions (Δ = ~922 cm⁻¹). Previous measurements reported, leading to the splitting of the 4T_{1g} ground state in O₃ symmetry into the 4E_g and 4A_{2g} states, separated by Δ (4E_g being the ground state). A value of 10Dq = 1.1 eV is found for the Co^{II} ions, in good agreement with the HS state. In contrast, the best simulation in the case of the Co^{III} ions corresponds to the higher 10Dq value of 3.0 eV, consistent with an LS state.

The straightforward comparison of typical spectral features of both Fe and Co ions in Cs–Fe₂Co₄ as visible in Figure 2, along with the LFM calculations described in the above, yields clear evidence of the occurrence of the light-induced excited state at 2 K. The spectra obtained after irradiation with the laser show an increase in the signatures of Co^{II} and Fe^{III} compared with the ground state at room temperature, which mainly includes Co^{II} and Fe^{III}. The signatures of Co^{II} and Fe^{III} in the excited state do not disappear completely, which indicates that the conversion is not complete for both Fe and Co ions. This is expected because of the initial presence of Co^{II} ions in the ground state, which implies the presence of Fe^{III} ions in the excited state.

To extract quantitative information about the relative amount of Co^{II}/Co^{III} and Fe^{II}/Fe^{III}, linear combinations of the modeled spectra presented in Figure 2 are used to visually fit the measurements obtained for Cs–Fe₂Co₄. We find 100% of Fe^{II} and a mix of 16 ± 1% of Co^{II} and 84 ± 1% of Co^{III} in the ground state. The amount of Co^{III} in the ground state is lower than the 25% that was previously reported.30 Because of the probing depth of TEY of a few nanometers, this result can be interpreted in terms of surface oxidation of part of the cubes. The excited state is composed of 52 ± 1% Fe^{III} and 48 ± 1% Fe^{II} on the one hand, and 64 ± 1% of Co^{III} and 36 ± 1% of Co^{II} on the other hand. As an additional confirmation, linear combinations of the reference compounds for Fe and Co ions can be found in Figures S5 and S6 and show very consistent results compared with the compositions obtained by multiplet calculations. From the compositions of the ground and excited states, we conclude that 48 ± 1% of Co^{III} is transformed into Co^{II}, whereas 48 ± 1% of the initial Fe^{II} ions in the ground state is oxidized toward Fe^{III} during the 3 h of laser irradiation. These results are perfectly consistent, and they demonstrate the concomitance of the Fe oxidation with the Co reduction. This is further supported by the observation of the XAS changes during the irradiation process. Figure S7 shows the comparison of the variation of Co^{III} and Fe^{III} in time during laser irradiation, revealing similar time constants for Co and Fe extracted from monoeponential fits. Altogether, these results confirm the ETCST mechanism in the Cs–Fe₂Co₄ cubes to be at the origin of the simultaneous transformation of the Fe and Co oxidation states and the Co spin transition. As supported by Figure S7, the conversion is not complete even after 5h of irradiation. This may be due to the 650 nm wavelength deviating from 808 nm, for which a full conversion was
reported in these compounds18, or the presence of CoII in the ground state preventing the electron transfer of 16\% of the Co–CN–Fe pairs.

Beyond the averaged properties provided by SQUID magnetometry, XMCD helps us to determine the local magnetic moments of the ions in the Cs–Fe\textsubscript{4}Co\textsubscript{4} cages. XMCD spectra were recorded on the Cs–Fe\textsubscript{4}Co\textsubscript{4} ground state at 200 K, well above the relaxation temperature of the system of \(\approx 66\) K (see Figure S8). No XMCD signal is detected at 200 K at the Fe L\textsubscript{2,3} edges. This is consistent with the above conclusion that the ground state contains solely LS FeIII. In contrast, at the Co L\textsubscript{2,3} edges, a clear dichroic signal on the order of 0.7\% with respect to the main edge jump is detected, confirming that the ground state contains a minor contribution of CoII, in line with the XAS analysis of the ground state. After laser irradiation at 2 K, the magnetic state of Cs–Fe\textsubscript{4}Co\textsubscript{4} is considerably modified, as shown by the XMCD signals reported in Figure 3a,b. Indeed, a significant XMCD signal is detected from FeIII together with a strong XMCD contribution of CoII, leading to 21\% and 50\% of signal normalized to the main edge jump, respectively. The XMCD is well reproduced by the calculations performed in C\textsubscript{3h} point symmetry for FeIII and CoII. (Note that we obtained a zero XMCD signal in the calculations performed for FeII and CoIII, in good agreement with the expected low spin state.) From the LFM calculations, we extract the orbital and spin angular momentum expectation values for Fe (respectively, for Co), which yield in the angular spherical average for a fully disordered sample \(\langle L_z \rangle / \hbar = -0.741\) (respectively, \(-0.410\)), \(\langle S_z \rangle / \hbar = -0.293\) (respectively, \(-0.538\)), and a magnetic dipole strength of \(\langle T_z \rangle / \hbar = -0.069\) (respectively, \(-0.008\)). These values give rise to the spin and orbital magnetic moments in the photoexcited state of \(M_{\text{spin}} = 0.59\mu_B\) and a large orbital moment of \(M_{\text{orb}} = 0.74\mu_B\) for FeIII and \(M_{\text{spin}} = 1.08\mu_B\) with the orbital moment of \(M_{\text{orb}} = 0.41\mu_B\) for CoII at 2 K and 6.8 T. From the comparison of the experimental XMCD signals (mainly negative) with the calculated ones with the magnetic field set along the C\textsubscript{3h} axis, one finds that the observed Co and Fe magnetic moments are both oriented parallel to the external magnetic field at 6.8 T. To investigate further the magnetic coupling between the ions, we have obtained the field-dependent magnetization for both Fe and Co from XMCD, as shown in Figure 3c in the paramagnetic excited state. Figure 3c shows a superposition of the element-specific magnetization curves \(M(H)\), which do not saturate at 6.8 T. This clearly demonstrates the absence of a significant antiferromagnetic coupling between the metal ions in the paramagnetic excited state. This result contrasts with the previous studies, which have demonstrated a strong antiferromagnetic coupling between Co and Fe in PBA 3D networks. Recently reported XMCD measurements of the dinuclear FeCo complex have led to similar conclusions.26 A ferromagnetic coupling cannot be excluded;18,35,36 however, from the current set of data, it is not possible to discriminate between a ferromagnetic Fe–Co exchange interaction and a paramagnetic behavior of the ions with their spins aligned along the direction of the magnetic field applied. The competition between the local anisotropy observed through the large orbital moments carried by the FeIII and CoII ions and the weak antiferromagnetic coupling makes the determination of the coupling tricky. As a rough approximation, considering the Heisenberg–Dirac Hamiltonian \(\hat{H}^{\text{spin}} = -J \hat{S}_{Fe} \hat{S}_{Co}\) and by comparison with the temperature in the experiment, we estimate a lower bound for the Fe–Co superexchange coupling of \(J \gtrsim -0.5\) cm\(^{-1}\). This can be interpreted in that a very weak antiferromagnetic coupling, no coupling, or a ferromagnetic coupling is consistent with our observations. A strong antiferromagnetic coupling can be ruled out with certainty.

In summary, using L-edge XAS as an element-specific probe of the valence and spin states of Fe and Co ions in Cs–Fe\textsubscript{4}Co\textsubscript{4} discrete molecular cubes, we have directly observed the concurrent electronic and magnetic changes of both types of ions upon light irradiation. These results demonstrate beyond the shadow of a doubt the existence of the light-induced ETCST process and its thermal relaxation in the molecular cages. The XMCD measurements directly reveal a parallel arrangement of the Fe and Co spins in the photoexcited state at 2 K for all applied magnetic field values. Furthermore, XMCD rules out the possibility of a strong antiferromagnetic coupling. Our study paves the way toward the integration of the present Cs–Fe\textsubscript{4}Co\textsubscript{4} cages, featuring excellent photo-
magnetic properties and a high solubility, into organic electronics devices.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcllett.8b03839.

Ligand-field multiplet calculations; best-fit parameters of the LFM calculations; expectation values of orbital and spin angular momentum and magnetic dipole operators; coefficient of determination; spectra of Fe and Co for the polycrystalline and the drop-cast samples; X-ray-induced conversion effect at 2 K; reference spectra of Fe and best fits; reference spectra of Co and best fits; linear combinations of the reference spectra of Fe; linear combinations of the reference spectra of Co; time dependence of Fe III and Co spectral features during laser irradiation; and XMCED of Fe and Co measured at 200 K (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: niel.daffe@psi.ch.
*E-mail: jan.dreiser@psi.ch.

ORCID

Niël Daffe: 0000-0002-2225-1658
Marie-Anne Arrio: 0000-0002-2945-6824
Rodrique Lescouëzec: 0000-0003-3510-5112
Jan Dreiser: 0000-0001-7480-1271

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Stefan Zeugin for his technical support during the experiments. Furthermore, we thank Marius Retegan for his help with the CRISPY software. Funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 701647 (M.S.), from the Swiss National Science Foundation (grant nos. 200021_165774/1 and 200020_182599/1, M.S., N.D., and J.D.), and from the Centre National de la Recherche Scientifique (CNRS, France) (M.-A.A.) are acknowledged.

REFERENCES

(24) Luque, F. J.; Kowalk, I. A.; Prieto-Ruiz, J. P.; Niño, M. A.; Prima-Garcia, H.; Romero, F. M.; Arvanitis, D.; Coronado, E.; Miranda, R.; de Miguel, J. J Magnetic Ordering in an (Fe0.2Cr0.8)1.5[Cr(CN)6] Prussian Blue Analogue Studied with Synchrotron Radiation Based Spectroscopies. J. Mater. Chem. C 2018, 6, 8171−8186.

